ตัววิ่ง

ยินดีต้อนรับสู่วิชาคณิตศาสตร์ Welcome to mathe

วันศุกร์ที่ 9 มกราคม พ.ศ. 2558

ฟังก์ชันขั้นบันได

ฟังก์ชันขั้นบันได คือฟังก์ชันบนจำนวนจริงซึ่งเกิดจากการรวมกันระหว่างฟังก์ชันคงตัวจากโดเมนที่แบ่งออกเป็นช่วงหลายช่วง กราฟของฟังก์ชันจะมีลักษณะเป็นส่วนของเส้นตรงหรือรังสีในแนวราบเป็นท่อน ๆ ตามช่วง ในระดับความสูงต่างกัน  อ่านต่อ


ฟังก์ชันเชิงเส้น

1.2 ฟังก์ชันเชิงเส้น   คือ ฟังก์ชันที่อยู่ในรูป y = ax+b เมื่อ a ,b เป็นจำนวนจริง และ  กราฟของฟังก์ชันเชิงเส้นจะเป็นเส้นตรง

           ตัวอย่างของฟังก์ชันเชิงเส้น   ได้แก่   อ่านต่อ
           1)   y = x                                                                                    

การแยกตัวประกอบของพหุนาม

 พหุนาม คือ นิพจน์สามารถเขียนในรูปเอกนามหรือสามารถเขียนในรูปการบวกของเอกนามตั้ง
     แต่สองเอกนามขึ้นไป

        การแยกตัวประกอบของพหุนาม

               การแยกตัวประกอบของพหุนาม คือ การเขียนพหุนามนั้นในรูปของการคูณของพหุนามที่มีดีกรี 






จำนวนจริง

จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}    อ่านต่อ




การให้เหตุผลแบบนิรนัย

การให้เหตุผลแบบนิรนัย  การให้เหตุผลแบบนิรนัยเป็นวิธีการให้เหตุผลโดยสรุปผลจากข้อความซึ่งเป็นความจริงทั่วไปมาเป็นข้ออ้างเพื่อสนับสนุนให้เกิดข้อสรุปที่เป็นความรู้ใหม่ที่เป็นข้อสรุปส่วนย่อยข้อสรุปที่ได้จากการให้เหตุผล
แบบนิรนัยนั้นจะเป็นข้อสรุปที่อยู่ในขอบเขตของเหตุเท่านั้นจะเป็นข้อสรุปที่กว้างหรือเกินกว่าเหตุ   อ่านต่อ


การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย (Inductive Reasoning) เกิดจากการที่มีสมมติฐานกรณีเฉพาะ หรือเหตุย่อยหลายๆ เหตุ เหตุย่อยแต่ละเหตุเป็นอิสระจากกัน มีความสำคัญเท่าๆ กัน และเหตุทั้งหลายเหล่านี้ไม่มีเหตุใดเหตุหนึ่งแสดงให้เห็นถึงความเป็นสมมติฐานกรณีทั่วไป หรือกล่าวได้ว่า การให้เหตุผลแบบอุปนัยคือการนำเหตุย่อยๆ แต่ละเหตุมารวมกัน เพื่อนำไปสู่ผลสรุปเป็นกรณีทั่วไป เช่นตัวอย่างการให้เหตุผลแบบอุปนัย  อ่านต่อ


เอกภพสัมพัทธ์

เอกภพสัมพัทธ์
เอกภพสัมพัทธ์ คือ เซตที่ถูกกำหนดขึ้นโดยมีข้อตกลงว่า จะกล่าวถึงสิ่งที่เป็นสมาชิกของเซตนี้เท่านั้น จะไม่กล่าวถึงสิ่งอื่นใดที่ไม่เป็นสมาชิกของเซตนี้ โดยทั่วไปจะใช้สัญลักษณ์ แทนเซตที่เป็นเอกภพสัมพัทธ์   อ่านต่อ




เซต

เซต  เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น
       เซตสระในภาษาอังกฤษ  หมายถึง  กลุ่มของอังกฤษ  a, e, i, o และ u
       เซตของจำนวนนับที่น้อยกว่า 10 หมายถึง  กลุ่มตัวเลข 1,2,3,4,5,6,7,8,และ9  อ่านต่อ